Copied to
clipboard

G = C22.2D44order 352 = 25·11

1st non-split extension by C22 of D44 acting via D44/D22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22.2D44, C23.1D22, (C2×Dic11)⋊C4, (C22×D11)⋊C4, C111(C23⋊C4), C22⋊C41D11, (C2×C22).27D4, C2.4(D22⋊C4), C23.D111C2, C22.3(C4×D11), C22.2(C22⋊C4), C22.8(C11⋊D4), (C22×C22).5C22, (C2×C22).1(C2×C4), (C11×C22⋊C4)⋊1C2, (C2×C11⋊D4).1C2, SmallGroup(352,12)

Series: Derived Chief Lower central Upper central

C1C2×C22 — C22.2D44
C1C11C22C2×C22C22×C22C2×C11⋊D4 — C22.2D44
C11C22C2×C22 — C22.2D44
C1C2C23C22⋊C4

Generators and relations for C22.2D44
 G = < a,b,c,d,e | a2=b2=c2=1, d22=a, e2=abc, ab=ba, eae-1=ac=ca, ad=da, dbd-1=ebe-1=bc=cb, cd=dc, ce=ec, ede-1=bcd21 >

2C2
2C2
2C2
44C2
4C4
4C22
22C22
22C4
44C4
44C22
2C22
2C22
2C22
4D11
2C2×C4
11C23
11C2×C4
22C2×C4
22D4
22D4
2Dic11
2D22
4Dic11
4D22
4C2×C22
4C44
11C22⋊C4
11C2×D4
2C2×C44
2C11⋊D4
2C11⋊D4
2C2×Dic11
11C23⋊C4

Smallest permutation representation of C22.2D44
On 88 points
Generators in S88
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 31)(10 32)(11 33)(12 34)(13 35)(14 36)(15 37)(16 38)(17 39)(18 40)(19 41)(20 42)(21 43)(22 44)(45 67)(46 68)(47 69)(48 70)(49 71)(50 72)(51 73)(52 74)(53 75)(54 76)(55 77)(56 78)(57 79)(58 80)(59 81)(60 82)(61 83)(62 84)(63 85)(64 86)(65 87)(66 88)
(1 71)(2 24)(3 73)(4 26)(5 75)(6 28)(7 77)(8 30)(9 79)(10 32)(11 81)(12 34)(13 83)(14 36)(15 85)(16 38)(17 87)(18 40)(19 45)(20 42)(21 47)(22 44)(23 49)(25 51)(27 53)(29 55)(31 57)(33 59)(35 61)(37 63)(39 65)(41 67)(43 69)(46 68)(48 70)(50 72)(52 74)(54 76)(56 78)(58 80)(60 82)(62 84)(64 86)(66 88)
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 79)(32 80)(33 81)(34 82)(35 83)(36 84)(37 85)(38 86)(39 87)(40 88)(41 45)(42 46)(43 47)(44 48)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)
(1 33)(2 80 50 32)(3 79)(4 30 52 78)(5 29)(6 76 54 28)(7 75)(8 26 56 74)(9 25)(10 72 58 24)(11 71)(12 22 60 70)(13 21)(14 68 62 20)(15 67)(16 18 64 66)(19 63)(23 59)(27 55)(31 51)(34 48 82 44)(35 47)(36 42 84 46)(37 41)(38 88 86 40)(39 87)(43 83)(45 85)(49 81)(53 77)(57 73)(61 69)

G:=sub<Sym(88)| (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88), (1,71)(2,24)(3,73)(4,26)(5,75)(6,28)(7,77)(8,30)(9,79)(10,32)(11,81)(12,34)(13,83)(14,36)(15,85)(16,38)(17,87)(18,40)(19,45)(20,42)(21,47)(22,44)(23,49)(25,51)(27,53)(29,55)(31,57)(33,59)(35,61)(37,63)(39,65)(41,67)(43,69)(46,68)(48,70)(50,72)(52,74)(54,76)(56,78)(58,80)(60,82)(62,84)(64,86)(66,88), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,45)(42,46)(43,47)(44,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,33)(2,80,50,32)(3,79)(4,30,52,78)(5,29)(6,76,54,28)(7,75)(8,26,56,74)(9,25)(10,72,58,24)(11,71)(12,22,60,70)(13,21)(14,68,62,20)(15,67)(16,18,64,66)(19,63)(23,59)(27,55)(31,51)(34,48,82,44)(35,47)(36,42,84,46)(37,41)(38,88,86,40)(39,87)(43,83)(45,85)(49,81)(53,77)(57,73)(61,69)>;

G:=Group( (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88), (1,71)(2,24)(3,73)(4,26)(5,75)(6,28)(7,77)(8,30)(9,79)(10,32)(11,81)(12,34)(13,83)(14,36)(15,85)(16,38)(17,87)(18,40)(19,45)(20,42)(21,47)(22,44)(23,49)(25,51)(27,53)(29,55)(31,57)(33,59)(35,61)(37,63)(39,65)(41,67)(43,69)(46,68)(48,70)(50,72)(52,74)(54,76)(56,78)(58,80)(60,82)(62,84)(64,86)(66,88), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,45)(42,46)(43,47)(44,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,33)(2,80,50,32)(3,79)(4,30,52,78)(5,29)(6,76,54,28)(7,75)(8,26,56,74)(9,25)(10,72,58,24)(11,71)(12,22,60,70)(13,21)(14,68,62,20)(15,67)(16,18,64,66)(19,63)(23,59)(27,55)(31,51)(34,48,82,44)(35,47)(36,42,84,46)(37,41)(38,88,86,40)(39,87)(43,83)(45,85)(49,81)(53,77)(57,73)(61,69) );

G=PermutationGroup([[(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,31),(10,32),(11,33),(12,34),(13,35),(14,36),(15,37),(16,38),(17,39),(18,40),(19,41),(20,42),(21,43),(22,44),(45,67),(46,68),(47,69),(48,70),(49,71),(50,72),(51,73),(52,74),(53,75),(54,76),(55,77),(56,78),(57,79),(58,80),(59,81),(60,82),(61,83),(62,84),(63,85),(64,86),(65,87),(66,88)], [(1,71),(2,24),(3,73),(4,26),(5,75),(6,28),(7,77),(8,30),(9,79),(10,32),(11,81),(12,34),(13,83),(14,36),(15,85),(16,38),(17,87),(18,40),(19,45),(20,42),(21,47),(22,44),(23,49),(25,51),(27,53),(29,55),(31,57),(33,59),(35,61),(37,63),(39,65),(41,67),(43,69),(46,68),(48,70),(50,72),(52,74),(54,76),(56,78),(58,80),(60,82),(62,84),(64,86),(66,88)], [(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,79),(32,80),(33,81),(34,82),(35,83),(36,84),(37,85),(38,86),(39,87),(40,88),(41,45),(42,46),(43,47),(44,48)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)], [(1,33),(2,80,50,32),(3,79),(4,30,52,78),(5,29),(6,76,54,28),(7,75),(8,26,56,74),(9,25),(10,72,58,24),(11,71),(12,22,60,70),(13,21),(14,68,62,20),(15,67),(16,18,64,66),(19,63),(23,59),(27,55),(31,51),(34,48,82,44),(35,47),(36,42,84,46),(37,41),(38,88,86,40),(39,87),(43,83),(45,85),(49,81),(53,77),(57,73),(61,69)]])

61 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E11A···11E22A···22O22P···22Y44A···44T
order1222224444411···1122···2222···2244···44
size1122244444444442···22···24···44···4

61 irreducible representations

dim11111122222244
type+++++++++
imageC1C2C2C2C4C4D4D11D22C4×D11D44C11⋊D4C23⋊C4C22.2D44
kernelC22.2D44C23.D11C11×C22⋊C4C2×C11⋊D4C2×Dic11C22×D11C2×C22C22⋊C4C23C22C22C22C11C1
# reps111122255101010110

Matrix representation of C22.2D44 in GL4(𝔽89) generated by

615800
312800
006158
003128
,
283100
586100
73536158
36723128
,
88000
08800
00880
00088
,
35597676
30491388
25645430
2575940
,
515100
453800
9342564
12808264
G:=sub<GL(4,GF(89))| [61,31,0,0,58,28,0,0,0,0,61,31,0,0,58,28],[28,58,73,36,31,61,53,72,0,0,61,31,0,0,58,28],[88,0,0,0,0,88,0,0,0,0,88,0,0,0,0,88],[35,30,25,25,59,49,64,7,76,13,54,59,76,88,30,40],[51,45,9,12,51,38,34,80,0,0,25,82,0,0,64,64] >;

C22.2D44 in GAP, Magma, Sage, TeX

C_2^2._2D_{44}
% in TeX

G:=Group("C2^2.2D44");
// GroupNames label

G:=SmallGroup(352,12);
// by ID

G=gap.SmallGroup(352,12);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,121,31,362,297,11525]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^22=a,e^2=a*b*c,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,d*b*d^-1=e*b*e^-1=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*c*d^21>;
// generators/relations

Export

Subgroup lattice of C22.2D44 in TeX

׿
×
𝔽